본문 바로가기
프로그래밍/알고리즘

이코테 최단경로 파이썬

by 숙님 2023. 2. 12.
728x90
미래 도시
A. 문제
방문 판매원 A는 공중 미래 도시에 있다.공중 미래 도시에는 1번부터 N번까지의 회사가 있는데 특정 회사끼리는 서로 도로를 통해 연결되어 있다.방문 판매원 A는 현재 1번 회사에 위치해 있으며, X번 회사에 방문해 물건을 판매하고자 한다.
공중 미래 도시에서 특정 회사에 도착하기 위한 방법은 회사끼리 연결되어 있는 도로를 이용하는 방법이 유일하다. 연결된 2개의 회사는 양방향으로 이동할 수 있다.특정 회사와 다른 회사가 도로로 연결되어 있다면 정확히 1만큼의 시간으로 이동할 수 있다.
오늘 방문 판매원 A는 소개팅에 참석하고자 한다. 소개팅 상대는 K번 회사에 존재한다. 방문 판매원 A는 X번 회사에 가서 물건을 판매하기 전에 먼저 소개팅 상대의 회사에 찾아가서 함께 커피를 마실 예정이다. 따라서 방문 판매원 A는 1번 회사에서 출발하여 K번 회사를 방문한 뒤에 X번 회사로 가는 것이 목표다. 이때 방문 판매원 A는 가능한 빠르게 이동하고자 한다.
방문 판매원이 회사 사이를 이동하게 되는 최소 시간을 계산하는 프로그램을 작성하시오.이때 소개팅의 상대방과 커피를 마시는 시간 등은 고려하지 않는다고 가정한다.
a. 예를 들면.
N = 5, X = 4, K = 5, M = 7
(1번, 2번), (1번, 3번), (1번, 4번), (2번, 4번), (3번, 4번), (3번, 5번), (4번, 5번)
이때 방문 판매원 A가 최종적으로 4번 회사에 가는 경로를 (1번-3번-5번-4번)으로 설정하면, 소개팅에도 참석할 수 있으면서 총 3만큼의 시간이 소요된다.
b. 입력 조건
전체 회사의 개수 N, 경로의 개수 M1 <= N, M <= 100M+1번째 줄까지 연결된 두 회사의 정보가 주어짐.M+2번째 줄은 X, K가 구분되어 주어짐1 <= K <= 100
c. 출력 조건
방문 판매원 A가 K번 회사를 거쳐 X번 회사로 가는 최소 이동 시간을 출력하라만약 X번 회사에 도달할 수 없다면 -1을 출력한다.
더보기
INF = int(1e9) # 무한을 의미하는 값으로 10억을 설정

# 노드의 개수 및 간선의 개수를 입력받기
n, m = map(int, input().split())
# 2차원 리스트(그래프 표현)를 만들고, 모든 값을 무한으로 초기화
graph = [[INF] * (n + 1) for _ in range(n + 1)]

# 자기 자신에서 자기 자신으로 가는 비용은 0으로 초기화
for a in range(1, n + 1):
    for b in range(1, n + 1):
        if a == b:
            graph[a][b] = 0

# 각 간선에 대한 정보를 입력 받아, 그 값으로 초기화
for _ in range(m):
    # A와 B가 서로에게 가는 비용은 1이라고 설정
    a, b = map(int, input().split())
    graph[a][b] = 1
    graph[b][a] = 1

# 거쳐 갈 노드 X와 최종 목적지 노드 K를 입력받기
x, k = map(int, input().split())

# 점화식에 따라 플로이드 워셜 알고리즘을 수행
for k in range(1, n + 1):
    for a in range(1, n + 1):
        for b in range(1, n + 1):
            graph[a][b] = min(graph[a][b], graph[a][k] + graph[k][b])

# 수행된 결과를 출력
distance = graph[1][k] + graph[k][x]

# 도달할 수 없는 경우, -1을 출력
if distance >= 1e9:
    print("-1")
# 도달할 수 있다면, 최단 거리를 출력
else:
    print(distance)
전보
A. 문제
여러 나라에 N개의 도시가 있다.각 도시는 보내고자 하는 메시지가 있는 경우, 다른 도시로 전보를 보내서 메시지를 전송할 수 있다.X에서 Y로 향하는 통로는 있지만, Y에서 X로 향하는 통로가 없다면 Y는 X로 메시지를 보낼 수 없다.통로를 거쳐 메시지를 보낼 때는 일정 시간이 소요된다.
어느날 C라는 도시에서 위급 상황이 발생했다.그래서 최대한 많은 도시로 메시지를 보내고자 한다.메시지는 도시 C에서 출발하여 각 도시 사이에 설치된 통로를 거쳐, 최대한 많이 퍼져나간다.각 도시의 번호와 통로가 설치되어 있는 정보가 주어졌을 떄, 도시 C에서 보낸 메시지를 받게 되는 도시의 개수는 총 몇 개이며 도시들이 모두 메시지를 받는 데까지 걸리는 시간은 얼마인지 계산하는 프로그램을 작성하라.
a. 입력 조건
도시의 개수 N, 통로의 개수 M, 메시지를 보내고자 하는 도시 C1 <= N <= 30,0001 <= M <= 200,0001 <= C <= NM+1번째 줄까지 통로에 대한 정보 X, Y, Z가 주어진다.특정 도시 X에서 다른 특정 도시 Y로 이어지는 통로가 있으며, 메시지가 전달되는 시간은 Z이다.1 <= X, Y <= N1 <= Z <= 1,000
b. 출력 조건
도시 C에서 보낸 메시지를 받는 도시의 총 개수와 총 걸리는 시간을 공백으로 구분하여 출력한다
더보기
import heapq
import sys
input = sys.stdin.readline
INF = int(1e9) # 무한을 의미하는 값으로 10억을 설정

# 노드의 개수, 간선의 개수, 시작 노드를 입력받기
n, m, start = map(int, input().split())
# 각 노드에 연결되어 있는 노드에 대한 정보를 담는 리스트를 만들기
graph = [[] for i in range(n + 1)]
# 최단 거리 테이블을 모두 무한으로 초기화
distance = [INF] * (n + 1)

# 모든 간선 정보를 입력받기
for _ in range(m):
    x, y, z = map(int, input().split())
    # X번 노드에서 Y번 노드로 가는 비용이 Z라는 의미
    graph[x].append((y, z))

def dijkstra(start):
   q = []
   # 시작 노드로 가기 위한 최단 경로는 0으로 설정하여, 큐에 삽입
   heapq.heappush(q, (0, start))
   distance[start] = 0
   while q: # 큐가 비어있지 않다면
        # 가장 최단 거리가 짧은 노드에 대한 정보를 꺼내기
        dist, now = heapq.heappop(q)
        if distance[now] < dist:
            continue
        # 현재 노드와 연결된 다른 인접한 노드들을 확인
        for i in graph[now]:
            cost = dist + i[1]
            # 현재 노드를 거쳐서, 다른 노드로 이동하는 거리가 더 짧은 경우
            if cost < distance[i[0]]:
                distance[i[0]] = cost
                heapq.heappush(q, (cost, i[0]))

# 다익스트라 알고리즘을 수행
dijkstra(start)

# 도달할 수 있는 노드의 개수
count = 0
# 도달할 수 있는 노드 중에서, 가장 멀리 있는 노드와의 최단 거리
max_distance = 0
for d in distance:
    # 도달할 수 있는 노드인 경우
    if d != 1e9:
        count += 1
        max_distance = max(max_distance, d)

# 시작 노드는 제외해야 하므로 count - 1을 출력
print(count - 1, max_distance)
플로이드
 

11404번: 플로이드

첫째 줄에 도시의 개수 n이 주어지고 둘째 줄에는 버스의 개수 m이 주어진다. 그리고 셋째 줄부터 m+2줄까지 다음과 같은 버스의 정보가 주어진다. 먼저 처음에는 그 버스의 출발 도시의 번호가

www.acmicpc.net

더보기
INF = int(1e9) # 무한을 의미하는 값으로 10억을 설정

# 노드의 개수 및 간선의 개수를 입력받기
n = int(input())
m = int(input())
# 2차원 리스트(그래프 표현)를 만들고, 모든 값을 무한으로 초기화
graph = [[INF] * (n + 1) for _ in range(n + 1)]

# 자기 자신에서 자기 자신으로 가는 비용은 0으로 초기화
for a in range(1, n + 1):
    for b in range(1, n + 1):
        if a == b:
            graph[a][b] = 0

# 각 간선에 대한 정보를 입력받아, 그 값으로 초기화
for _ in range(m):
    # A에서 B로 가는 비용은 C라고 설정
    a, b, c = map(int, input().split())
    # 가장 짧은 간선 정보만 저장
    if c < graph[a][b]:
        graph[a][b] = c

# 점화식에 따라 플로이드 워셜 알고리즘을 수행
for k in range(1, n + 1):
    for a in range(1, n + 1):
        for b in range(1, n + 1):
            graph[a][b] = min(graph[a][b], graph[a][k] + graph[k][b])

# 수행된 결과를 출력
for a in range(1, n + 1):
    for b in range(1, n + 1):
        # 도달할 수 없는 경우, 0을 출력
        if graph[a][b] == INF:
            print(0, end=" ")
        # 도달할 수 있는 경우 거리를 출력
        else:
            print(graph[a][b], end=" ")
    print()
정확한 순위
A. 문제
선생님은 시험을 본 학생 N명의 성적을 분실하고, 성적을 비교한 결과의 일부만 가지고 있다. 학생 N명의 성적은 모두 다른데, 다음은 6명의 학생에 대하여 6번만 성적을 비교한 결과이다.
1번 학생의 성적 < 5번 학생의 성적3번 학생의 성적 < 4번 학생의 성적4번 학생의 성적 < 2번 학생의 성적4번 학생의 성적 < 6번 학생의 성적5번 학생의 성적 < 2번 학생의 성적5번 학생의 성적 < 4번 학생의 성적
A번 학생의 성적이 B번 학생보다 낮다면 화살표가 A에서 B를 가리키도록 한다.
학생들의 성적을 비교한 결과가 주어질 때, 성적 순위를 정확히 알 수 있는 학생은 모두 몇명인지 계산하는 프로그램을 작성하라.
a. 예를 들면.
순위를 정확히 알 수 있는 학생이 있다. 예를 들어 1번 학생은 5번 학생보다 성적이 낮고, 5번 학생은 4번 학생보다 성적이 낮으므로 1번 학생은 4번 학생보다 성적이 낮다. 따라서 1번, 3번, 5번 학생은 모두 4번 학생보다 성적이 낮다고 볼 수 있다. 4번 학생은 2번 학생과 6번 학생보다 성적이 낮다. 즉, 4번 학생보다 성적이 낮은 학생은 3명이고, 성적이 높은 학생은 2명이므로 4번 학생의 성적 순위를 정확히 알 수 있다.
b. 입력 조건
첫째 줄에 학생들의 수 N (2 <= N <= 500)과 두 학생의 성적을 비교한 횟수 M(2 <= M <= 10,000)이 주어진다.다음 M개의 각 줄에는 두 학생의 성적을 비교한 결과를 나타내는 두 양의 정수 A와 B가 주어진다. 이는 A번 학생의 성적이 B번 학생보다 낮다는 것을 의미한다.
c. 출력 조건
첫째 줄에 성적 순위를 정확히 알 수 있는 학생이 몇 명인지 출력한다.
더보기
INF = int(1e9) # 무한을 의미하는 값으로 10억을 설정

# 노드의 개수, 간선의 개수를 입력받기
n, m = map(int, input().split())
# 2차원 리스트(그래프 표현)를 만들고, 모든 값을 무한으로 초기화
graph = [[INF] * (n + 1) for _ in range(n + 1)]
 
# 자기 자신에서 자기 자신으로 가는 비용은 0으로 초기화
for a in range(1, n + 1):
    for b in range(1, n + 1):
        if a == b:
            graph[a][b] = 0
 
# 각 간선에 대한 정보를 입력 받아, 그 값으로 초기화
for _ in range(m):
    # A에서 B로 가는 비용을 1로 설정
    a, b = map(int, input().split())
    graph[a][b] = 1
 
# 점화식에 따라 플로이드 워셜 알고리즘을 수행
for k in range(1, n + 1):
    for a in range(1, n + 1):
        for b in range(1, n + 1):
            graph[a][b] = min(graph[a][b], graph[a][k] + graph[k][b])

result = 0
# 각 학생을 번호에 따라 한 명씩 확인하며 도달 가능한지 체크
for i in range(1, n + 1):
    count = 0
    for j in range(1, n + 1):
        if graph[i][j] != INF or graph[j][i] != INF:
            count += 1
    if count == n:
        result += 1
print(result)
화성 탐사
A. 문제
당신은 화성 탐사 기계를 개발하는 프로그래머다. 그런데 화성은 에너지 공급원을 찾기가 힘들다. 그래서 에너지를 효율적으로 사용하고자 화성 탐사 기계가 출발 지점에서 목표 지점까지 이동할 때 항상 최적의 경로를 찾도록 개발해야 한다.
화성 탐사 기계가 존재하는 공간은 N x N 크기의 2차원 공간이며, 각각의 칸을 지나기 위한 비용(에너지 소모량)이 존재한다. 가장 왼쪽 위 칸인 [0][0] 위치에서 가장 오른쪽 아래 칸인 [N - 1][N - 1] 위치로 이동하는 최소 비용을 출력하는 프로그램을 작성하라. 화성 탐사 기계는 특정한 위치에서 상하좌우 인접한 곳으로 1칸씩 이동할 수 있다.
a. 입력 조건
첫째 줄에 테스트 케이스의 수 T(1 <= T <= 10)가 주어진다.매 테스트 케이스의 첫째 줄에는 탐사 공간의 크기를 의미하는 정수 N이 주어진다.2 <= N <= 125이어서 N개의 줄에 걸쳐 각 칸의 비용이 주어지며 공백으로 구분한다.0 <= 각 칸의 비용 <= 9
c. 출력 조건
각 테스트 케이스마다 [0][0]의 위치에서 [N - 1][N - 1]의 위치로 이동하는 최소 비용을 한 줄에 하나씩 출력한다.
더보기
import heapq
import sys
input = sys.stdin.readline
INF = int(1e9) # 무한을 의미하는 값으로 10억을 설정

dx = [-1, 0, 1, 0]
dy = [0, 1, 0, -1]

# 전체 테스트 케이스(Test Case)만큼 반복
for tc in range(int(input())):
    # 노드의 개수를 입력받기
    n = int(input())

    # 전체 맵 정보를 입력받기
    graph = []
    for i in range(n):
        graph.append(list(map(int, input().split())))

    # 최단 거리 테이블을 모두 무한으로 초기화
    distance = [[INF] * n for _ in range(n)]

    x, y = 0, 0 # 시작 위치는 (0, 0)
    # 시작 노드로 가기 위한 비용은 (0, 0) 위치의 값으로 설정하여, 큐에 삽입
    q = [(graph[x][y], x, y)]
    distance[x][y] = graph[x][y]

    # 다익스트라 알고리즘을 수행
    while q:
          # 가장 최단 거리가 짧은 노드에 대한 정보를 꺼내기
          dist, x, y = heapq.heappop(q)
          # 현재 노드가 이미 처리된 적이 있는 노드라면 무시
          if distance[x][y] < dist:
              continue
          # 현재 노드와 연결된 다른 인접한 노드들을 확인
          for i in range(4):
              nx = x + dx[i]
              ny = y + dy[i]
              # 맵의 범위를 벗어나는 경우 무시
              if nx < 0 or nx >= n or ny < 0 or ny >= n:
                  continue
              cost = dist + graph[nx][ny]
              # 현재 노드를 거쳐서, 다른 노드로 이동하는 거리가 더 짧은 경우
              if cost < distance[nx][ny]:
                  distance[nx][ny] = cost
                  heapq.heappush(q, (cost, nx, ny))

    print(distance[n - 1][n - 1])
숨바꼭질
A. 문제
동빈이는 숨바꼭질을 하면서 술래로부터 잡히지 않도록 숨을 곳을 찾고 있다. 동빈이는 1 ~ N번까지의 헛간 중에서 하나를 골라 숨을 수 있으며, 술래는 항상 1번 헛간에서 출발합니다. 전체 맵에는 총 M개의 양방향 통로가 존재하며, 하나의 통로는 서로 다른 두 헛간을 연결한다. 또한 전체 맵은 항상 어떤 헛간에서 다른 어떤 헛간으로 도달이 가능한 형태로 주어진다.
동빈이는 1번 헛간으로부터 최단 거리가 가장 먼 헛간이 가장 안전하다고 판단한다. 이때 최단 거리의 의미는 지나야 하는 길의 최소 개수를 의미한다. 동빈이가 숨을 헛간의 번호를 출력하는 프로그램을 작성하라
a. 입력 조건
첫째 줄에는 N, M이 주어지며, 공백으로 구분한다.2 <= N <= 20,0001 <= M <= 50,000이후 M개의 줄에 걸쳐서 서로 연결된 두 헛간 A와 B의 번호가 공백으로 구분되어 주어진다.1 <= A, B <= N
c. 출력 조건
숨어야 하는 헛간 번호거리가 같은 헛간이 여러개면 가장 작은 헛간 번호를 출력그 헛간까지의 거리그 헛간과 같은 거리를 갖는 헛간의 개수
더보기
import heapq
import sys
input = sys.stdin.readline
INF = int(1e9) # 무한을 의미하는 값으로 10억을 설정

# 노드의 개수, 간선의 개수를 입력받기
n, m = map(int, input().split())
# 시작 노드를 1번 헛간으로 설정
start = 1
# 각 노드에 연결되어 있는 노드에 대한 정보를 담는 리스트를 만들기
graph = [[] for i in range(n + 1)]
# 최단 거리 테이블을 모두 무한으로 초기화
distance = [INF] * (n + 1)

# 모든 간선 정보를 입력받기
for _ in range(m):
    a, b = map(int, input().split())
    # a번 노드와 b번 노드의 이동 비용이 1이라는 의미(양방향)
    graph[a].append((b, 1))
    graph[b].append((a, 1))

def dijkstra(start):
    q = []
    # 시작 노드로 가기 위한 최단 경로는 0으로 설정하여, 큐에 삽입
    heapq.heappush(q, (0, start))
    distance[start] = 0
    while q: # 큐가 비어있지 않다면
        # 가장 최단 거리가 짧은 노드에 대한 정보를 꺼내기
        dist, now = heapq.heappop(q)
        # 현재 노드가 이미 처리된 적이 있는 노드라면 무시
        if distance[now] < dist:
            continue
        # 현재 노드와 연결된 다른 인접한 노드들을 확인
        for i in graph[now]:
            cost = dist + i[1]
            # 현재 노드를 거쳐서, 다른 노드로 이동하는 거리가 더 짧은 경우
            if cost < distance[i[0]]:
                distance[i[0]] = cost
                heapq.heappush(q, (cost, i[0]))

# 다익스트라 알고리즘을 수행
dijkstra(start)

# 가장 최단 거리가 먼 노드 번호(동빈이가 숨을 헛간의 번호)
max_node = 0
# 도달할 수 있는 노드 중에서, 가장 최단 거리가 먼 노드와의 최단 거리
max_distance = 0
# 가장 최단 거리가 먼 노드와의 최단 거리와 동일한 최단 거리를 가지는 노드들의 리스트
result = []

for i in range(1, n + 1):
    if max_distance < distance[i]:
        max_node = i
        max_distance = distance[i]
        result = [max_node]
    elif max_distance == distance[i]:
        result.append(i)

print(max_node, max_distance, len(result))

댓글